

MPQ Programmer API

Application Interface User

Guide

Initial Release

December 15, 2010

1

MPQ Programmer API

Application Interface User Guide

RPM Systems Corporation

December 15, 2010 Initial Release

February 10, 2014 Added OverlayData function

MPQ Programmer API

Application Interface User

Guide

Initial Release

December 15, 2010

2

Overview ... 3

Status ... 3

Invoking the API ... 5

API Function Details... 6

Open() ... 6

SelectProgrammer() .. 6

PortEnables()... 7

Program() .. 7

Status() .. 8

StatusDecodes() .. 11

Sample Application ... 11

MPQ Programmer API

Application Interface User

Guide

Initial Release

December 15, 2010

3

Overview

The MPQ API consists of a Windows .NET compliant (managed) class module, distributed as a

dynamic- link library (DLL). The API provides the functionality necessary for a user to write native

code to access the programmer, initiate and monitor programming operations, and report completion

status. The API does not provide the functionality to load or manage image information in the

programmer. The MPManager software is required for these operations.

It is possible to user the API to manage programming on multiple programmers on a given

communication port, commonly referred to as an array. Arrays may be constructed using RPM’s

MPQ-AIB-USB array interface board. This product provides a single USB-mapped COM interface

on the PC side, supporting multiple programmers on an RS-485 bus on the programmer side.

Programmers in an array are distinguished from one another by a programmer address.

The API provides the following functions:

Open() Opens a communication port to the programmer(s)

SelectProgrammer() Selects, by address, the programmer to which commands are being

directed

Close() Closes the communication port to the programmer(s)

PortEnables() Selects which programmer ports will be enabled for Program() operations

Program() Initiates a programming cycle on the selected programmer

Status() Returns port status for the selected programmer

StatusDecode() Decodes a numeric port status value into a status string

OverlayData() Allows programming of sections of memory without a complete erase

Status

Each API call returns a uint32 iSTS value. The possible values for iSTS are exported as constants

from the MPQ API. The possible values for iSTS are provided below.

MPQ Programmer API

Application Interface User

Guide

Initial Release

December 15, 2010

4

STS_COMM_OPEN_FAIL Communications port open failed. Typically

this occurs if an invalid COM port selection

is provided, or another application is using

the selected COM port.

STS_SUCCESS Command completed successfully

STS_COMM_RCV_FAIL Returned if a low-level communication

failure occurs while reading data from the

COM port, for example, as a result of reading

from a COM port which has not been

opened.

STS_COMM_XMT_FAIL Returned if a low-level communication

failure occurs while writing data to the COM

port, for example, as a result of writing to a

COM port which has not been opened.

STS_COMM_RCV_TIMEOUT Returned if a valid command response is not

received from MPQ within a defined timeout

period. The timeout period for each

command is set by the API, and is typically

500mS. Longer values are used for certain

API functions, such as changing modes.

STS_COMM_PROGRAMMER_NOT_

SELECTED

The API requires that a programmer be

selected, using the SelectProgrammer()

function, before communication can be

directed to it. This status is returned if an API

is invoked before a programmer has been

selected.

STS_CMD_RESP_ID This is a protocol layer error indicating that a

valid command response was received from

the MPQ, but the response ID did not

correspond to the command issued.

STS_CMD_RESP_LENGTH This is a protocol layer error indicating that a

valid command response was received from

the programmer, but the length of the

response data was not as expected.

MPQ Programmer API

Application Interface User

Guide

Initial Release

December 15, 2010

5

STS_RESP_ADDRESS This is a protocol layer error indicating that a

valid command response was received but

the device address did not correspond to the

command issued.

RESP_MISSPARAM This is an MPQ generated status which

indicates that the command it received was

missing one or more required parameters.

RESP_BADPARAM This is an MPQ generated status which

indicates that one or more command

parameters were invalid.

RESP_BADCMD This is an MPQ generated status which

indicates that an unrecognized command was

received.

RESP_BUSY This is an MPQ generated status. It is issued

to indicate that the received command cannot

be executed because the MPQ is busy. This is

typically returned if a Program() command is

issued while the MPQ is already actively

programming.

RESP_BADIMAGE This is an MPQ generated status which

indicates that the Program() command

requested programming with an invalid

Image #. MPQ supports four images, 1-4.

RESP_NOIMAGE This is an MPQ generated status which

indicates that the Program() command

requested programming with a valid Image #,

but the associated Image slot is either empty,

or the image is corrupt.

Invoking the API

The MPQ_API class must be imported into the user application, and instantiated before it can be used.

Imports MPQ_API

MPQ Programmer API

Application Interface User

Guide

Initial Release

December 15, 2010

6

Public Class UserApp

…

 Dim MyProgrammer As New MPQ_API.MPQ_API

…

End Class

In addition, files MPQ_API.DLL and MPQ_COMM.DLL must be included in the application path

API Function Details

Open()

The Open() function is used to open a communication port to the programmer(s). It is defined as

follows:

Public Function Open(ByVal CommPort As String) As UInt32

CommPort is a string value indicating the communications port to be opened.

Example (vb.net):

ists = MyProgrammer.Open("COM1") ' open COM port to programmer(s)

SelectProgrammer()

The SelectProgrammer() function selects, by address, the programmer to which subsequent

commands will be directed. It is defined as follows:

Public Function SelectProgrammer(ByVal AddressUB As Byte) As UInt32

AddressUB is a byte value indicating the programmer address. MPQ programmers are typically

shipped from the factory at address 1. For array applications, each programmer must have a unique

address. The programmer address may be changed using the MPManager application.

Example (vb.net):

 ists = MyProgrammer.SelectProgrammer(1) 'select programmer address 1

MPQ Programmer API

Application Interface User

Guide

Initial Release

December 15, 2010

7

PortEnables()

MPQ provides four physical ports for connection to four targets in parallel. The PortEnables()

function is used to select which of the ports will be enabled for subsequent programming operations.

It is defined as follows:

Public Function PortEnables(ByVal bmEnablesUB As Byte) As UInt32

Parameter bmEnablesUB is a bit-mapped parameter which is encoded as follows:

Bit 0 Port 1 Enable 1 = Enabled, 0 = Disabled

Bit 1 Port 2 Enable 1 = Enabled, 0 = Disabled

Bit 2 Port 3 Enable 1 = Enabled, 0 = Disabled

Bit 3 Port 4 Enable 1 = Enabled, 0 = Disabled

The API exports bit definitions for the four port enables which can be logically OR’s to create

bmEnablesUB, as well as a definition for ALL ports enabled.

bmPORT1 Include to enable Port 1

bmPORT2 Include to enable Port 2

bmPORT3 Include to enable Port 3

bmPORT4 Include to enable Port 4

bmPORTALL Include to enable all 4 ports

Example (vb.net):

ists = MyProgrammer.PortEnables(MPQ_API.MPQ_API.bm_PORTALL) 'enable all ports

Program()

MPQ provides four image slots in its internal flash, into which four unique images may be loaded

using MPManager. The various parameters necessary for programming, such as the device type and

device power supply voltage, are selected at the time the image is loaded. The MPQ API allows

programming cycles using any of the four images to be initiated and monitored.

MPQ Programmer API

Application Interface User

Guide

Initial Release

December 15, 2010

8

Programming is initiated using the Program() function. It is defined as follows:

Public Function Program(ByVal ImageUB As Byte) As UInt32

This function initiates programming of the image selected by ImageUB, on the ports enabled by the

PortEnables() function. Valid values for ImageUB are between 1 and 4. Any other value of ImageUB

will return a RESP_BADIMAGE status.

If the selected image is empty (no image has been loaded into the selected slot) or corrupt (fails a

CRC check), Program() will return RESP_NOIMAGE.

Once programming has been successfully initiated, the Status() function is used to monitor

programming progress.

Example (vb.net):

ists = MyProgrammer.Program(1) 'initiate programming with Image 1

Status()

The Status() function returns the status of the four programmer ports. In addition, it returns one byte

which indicates whether the programming operation is complete.

The format of this function is:

Public Function Status(ByRef PortStatusUB() As Byte)

PortStatusUB is a byte array at least 5 bytes in size, into which Status() writes the status informatione.

The first byte (PortStausUB(0)) is a Busy status, defined as follows:

Bit 0 =1: Port 1 is Busy; =0: Port 1 is not busy

Bit 1 =1: Port 2 is Busy; =0: Port 2 is not busy

Bit 2 =1: Port 3 is Busy; =0: Port 3 is not busy

Bit 3 =1: Port 4 is Busy; =0: Port 4 is not busy

If PortStatusUB() returns a 0 value, the programming operation has completed on all ports.

Following the Busy status, one Port status byte is returned for each of the four ports (PortStatusUB(1)

– PortStatusUB(4).. The possible port status values are exported by the API, and descriptions are

provided in the following table. The table also indicates whether the particular status condition is a

Busy or a Not Busy condition. Note that not all status values are valid for all types of programmers.

MPQ Programmer API

Application Interface User

Guide

Initial Release

December 15, 2010

9

PSTS_DONE Programming complete Not Busy

PSTS_PGM Programming in progress Busy

PSTS_VFY Verify in progress Busy

PSTS_WFP Waiting for Power. The programmer is

waiting for power to be valid on this

port. The programmer will wait 10

seconds for valid power before failing.

Busy

PSTS_VCC_OK Valid power has been detected. This

status is returned only in Power-on

programming mode, when power has

been detected on this port, but other

enabled ports do not yet have valid

power, so the programming cycle has not

yet begun.

Busy

PSTS_DISABLED The port is disabled Not Busy

PSTS_READ Reading target device Busy

PSTS_CKSM Performing device checksum Busy

PSTS_EEPROM Programming EEPROM Busy

PSTS_EEPROM_VFY Verifying EEPROM Busy

PSTS_CFG The programmer is reconfiguring its

hardware for programming

Busy

PSTS_F_PWR Failed power. Programmer failed to

detect valid power on the port within 10

seconds of Program initiation.

Not Busy

PSTS_F_TO Failed device timeout. Programmer

timed out waiting for the device to return

programming status (WAIT-AND-

POLL).

Not Busy

PSTS_F_VFY Failed Verify. Device data did not verify. Not Busy

MPQ Programmer API

Application Interface User

Guide

Initial Release

December 15, 2010

10

PSTS_F_ID Failed Device ID. Device ID read from

the part did not match the target device.

This could be an indication of an

incorrect device, but it could also

indicate a failure in the programmer

serial data communication.

Not Busy

PSTS_F_VCC Failed power. This failure is returned in

Power-on programming mode if power is

already detected on the device when

Programming is initiated.

Not Busy

PSTS_F_OCD OCD communication failed (Zilog Z8) Not Busy

PSTS_F_RESET Failed – Target reset is asserted.

PSTS_F_COUNTEXP Failed image count. The number of

image impressions allowed for the

selected image has been exhausted. This

will only occur is image control is

enabled when the image is loaded into

the programmer.

Not Busy

PSTS_F_VFY_EEPROM EEPROM Verify Failed Not Busy

PSTS_F_FUSES Fuse Verify Failed Not Busy

PSTS_LOCKBITS Failed programming Lock bits Not Busy

PSTS_F_READPROT Failed reading – read-protected device Not Busy

PSTS_F_BADIMAGE Failed – Image is bad. Not Busy

In addition, the API StatusDecode() function may be used to return a string representation of each

valid port status.

Example (vb.net):

Dim PortStatusUB(4) As Byte

ists = MyProgrammer.Status(PortStatusUB) 'read ports status

MPQ Programmer API

Application Interface User

Guide

Initial Release

December 15, 2010

11

StatusDecodes()

The StatusDecode() function accepts a valid port-status code, as returned by the Status() function,

and returns a string representation of the status value. This is provided as a convenience, to simplify

UI implementations, and is not a required use. The function is defined as follows:

Public Function StatusDecode(ByVal StatusUB As Byte) As String

StatusUB is a standard port-status value. Note that the function does not return a standard iSTS value.

If the port status value in StatusUB is not recognized, a value of “UNKNOWN” is returned.

OverlayData()

The OverlayData() function allows a section of target memory to be programmed outside of the

normal erase/program/verify flow. It is intended to allow target-device-specific data to be

programmed into a device after completion of the normal gang-programming operation. NOTE that it

is necessary that the area to be overwritten be unprogrammed (typically 0xFF) at the time the

OverlayData command is issued. The function is defined as follows:

Public Function OverlayData (ByVal ImageUB As Byte, ByVal MemorySpaceUB As Byte, ByVal

AddressUL As UInt32, ByVal LengthUB As Byte, ByVal DataUB() As Byte) As UInt32

ImageUB Image # to be used as a background pattern for the overlay

MemorySpaceUB Memory space to be overlaid. Current only SPACE_EEPROM is supported.

AddressUL Starting address for overlay

LengthUB Number of bytes to be overlaid (64 max)

DataUB() Byte array containing LengthUB bytes of data to be overlaid

Sample Application

A simple sample application, written in vb.net, is provided with the API release. The MPQ API

is .NET compliant managed code and, as such, it can be invoked by any .NET application (C#, VCC,

etc).

